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Cholestasis constitutes one of the most common and severe manifestations of acquired or inherited liver
disease. When manifest in early infancy, it is often life-threatening and usually requires surgical
management. In many cases, liver transplantation is the only effective therapy. Extensive knowledge
about the molecular mechanisms underlying several pediatric cholestatic disorders has been gained in
recent years from studies in both experimental models and clinical forms. In this review, we focus on
recent contributions to the knowledge of molecular basis of main pediatric cholestatic disorders, such
as biliary atresia, Alagille syndrome, and familial intrahepatic cholestasis. For some of them, putative
targets of therapeutic interest, such as interferon-� and Farnesoid X receptor, have been proposed.
© 2005 Elsevier Inc. All rights reserved.
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Cholestasis results from the impaired secretion of bile
rom the liver to the intestine. As such, it represents a
linical and biochemical syndrome that is produced by a
ide variety of disease processes that affect the liver. Indi-
iduals with cholestasis manifest jaundice, severe itching,
alabsorption of fats and lipid-soluble vitamins, and, in
any cases, progressive liver damage. These clinical man-

festations are due to accumulation in blood and tissues of
ubstances normally secreted in the bile, namely bilirubin,
ile acids, and cholesterol, and to the absence of bile from
he intestine.

There are many causes of cholestasis in early infancy
anging from normal physiologic jaundice to complete
bliteration of biliary tree. Intrahepatic cholestasis may re-
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ult from occlusion or paucity of intrahepatic bile ducts or
rom functional failure of the hepatocytes to secrete bile.
bstruction of extrahepatic bile duct is usually referred to as

xtrahepatic cholestasis. Progress in the molecular mecha-
isms underlying disorders that fall into these categories
nd often require liver transplantation forms the basis of this
eview.

iliary atresia

iliary atresia represents the most frequent cause of neona-
al cholestasis. It is a devastating disease resulting from a
broinflammatory obliteration of the bile duct system that

eads to impaired bile flow and ongoing hepatocellular in-
ury.1 For affected children to survive, the only effective
reatment is surgical. The bile duct obstruction may be
elieved by portoenterostomy (the Kasai’s procedure),

hich in most cases improves bile drainage, particularly if
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t is performed within the first months of life.2 However,
his is a temporary treatment, and the majority of patients
evelop progressive hepatic fibrosis and eventually require
iver transplantation.3 In fact, biliary atresia remains the

ost common indication for liver transplantation in child-
ood. Two clinical forms of biliary atresia are currently
ecognized: the fetal or embryonic form and the perinatal
ne.1,3 In both cases, the cause of disease remains unknown.
lthough it typically presents soon after birth, it does not

ppear to be an inherited disease. The embryonic form (also
ermed “polyasplenia syndrome” or “biliary atresia splenic
alformation syndrome”) has been related to defects in

mbryogenesis, since it is frequently associated with other
ongenital anomalies, including poly- or asplenia, situs in-
ersus, and cardiac abnormalities.4 A putative role of genes
egulating laterality was suggested from findings in mice
arrying a mutation in the inversin (Inv) gene, which present
bnormalities in organ symmetry and obliteration of extra-
epatic bile ducts.5 However, the involvement of INV in the
mbryonic form of biliary atresia seems unlikely, since no
utation in this gene has been found in affected children.6

eterozygous mutations in genes involved in establishing the
eft–right axis, such as CFC1, which encodes the CRYPTIC
rotein, have been detected in several individuals with biliary
tresia and laterality defects.7,8 But these mutations are sug-
ested to confer a predisposition rather to produce the dis-
ase phenotype. To date, no consistent association between
utations in genes regulating laterality and the development

f biliary atresia has been reported. Recently, Zhang and
oworkers have suggested that phenotypic manifestations of
he embryonic form of biliary atresia are modulated by
pigenetic factors, since livers from affected children ex-
ibit an increased expression of genes involved in chroma-
in function and imprinted genes, as compared with livers
rom patients with the perinatal form.9 Such a possibility is
ighly suggestive, but has yet to be adequately investigated.

Children with the perinatal form of biliary atresia do not
resent other congenital anomalies. Different etiologies
ave been postulated for the disease, including vascular
esions, environmental toxins, aberrant immune and/or in-
ammatory response, and occult viral infections.3,10 The
urrent theories suggest that biliary atresia is not a single
isease, but rather a heterogeneous condition resulting from
complex interplay among genetic factors, insults that

arget the hepatobiliary tree, and activation of particular
mmunologic pathways.3,10,11

Regardless of the initiating insult, there is increasing
vidence pointing to the activation of a cell-mediated im-
une response as a determinant factor in the pathogenesis

f biliary atresia. Earlier studies showed that bile duct dam-
ge in children with biliary atresia was associated with
ymphocytic infiltration into bile duct epithelium.12,13 The
ell infiltrates were subsequently demonstrated to be pre-
ominantly Kupffer cells (resident liver macrophages), and
D4� (helper), CD8� (cytotoxic), and natural killer lym-

hocytes.14,15 A functional commitment of lymphocytes has c
een supported by gene-profiling analyses performed in
iver biopsies from infants with biliary atresia at early stages
f disease and age-matched diseased control subjects. Sam-
les from children with biliary atresia exhibited a coor-
inated overexpression of genes regulating lymphocyte
ifferentiation, such as osteopontin, a regulator of cell-
ediated immunity, and interferon-� (IFN-�).16 Whether

epatic inflammation of children with biliary atresia repre-
ents a specific immune process involved in the pathogen-
sis of the disease or a secondary response to cholestasis has
een recently addressed. Mack and coworkers have found
hat portal tracts of children with biliary atresia at the time
f diagnosis (3-12 weeks of age) are infiltrated with a
haracteristic inflammatory cell population (CD4� and
D8� T cells, and Kupffer cells), with local production of
roinflammatory cytokines, such as IL-2, IFN-�, and tumor
ecrosis factor-�.17 This pattern was not found in liver from
atients with other neonatal cholestatic disorders (including
xtrahepatic bile duct obstruction by a choledocal cyst),
herefore suggesting that portal tract inflammation in biliary
tresia is not secondary to the presence of cholestasis, but
ather it is an event involved in the pathogenesis of the
isease. Further experimental evidence has been provided
y Shivakumar and coworkers in a murine model of rota-
irus-induced biliary atresia. Rotavirus infection of neonatal
ice specifically targeted bile ducts cells and triggered an

mmediate infiltration of the hepatobiliary system by neutro-
hils, followed by IFN-�-producing T lymphocytes, which
esulted in obstruction of extrahepatic bile ducts. IFN-� was
emonstrated to play a key regulatory role in the pathogen-
sis of bile duct injury and obstruction, since loss of ex-
ression of this cytokine prevented the inflammatory and
brosing occlusion of bile ducts.18 Although, as noted
bove, an increased expression of IFN-� has been found in
nfants at early stages of disease,16 it is difficult to assess
hether IFN-� also regulates biliary obstruction in humans.
evertheless, altogether these findings offer the encourag-

ng prospect that selective blockage of IFN-� action may be
n approach to management of this disease.

lagille syndrome

lagille syndrome is an autosomal dominant disorder char-
cterized by developmental abnormalities of the liver, heart,
ace, eye, kidney, and skeleton. This disease exhibits ex-
remely variable expressivity ranging from apparent normal
henotype to severely affected cases; some patients present
nly congenital cardiovascular defects such as tetralogy of
allot and pulmonary artery hypoplasia or stenosis.19 The
epatic manifestations result from a paucity of intrahepatic
ile ducts and vary from mild to severe cholestasis.20 Liver
ransplantation is eventually necessary in 30% to 50% of
atients who have hepatic symptoms in infancy.21,22

lagille syndrome is caused by mutation or deletion of one

opy of JAG1 (Jagged1) gene, which probably leads to
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rotein haploinsufficiency.23,24 JAG1 encodes a cell surface
rotein that functions as a ligand for the Notch transmem-
rane receptors. Interaction of Notch receptors (Notch 1 to
) with their ligands (JAG1, JAG2, Delta-like1, Delta-like3,
elta-like4) represents an evolutionary conserved cell-to-

ell communication system that plays a critical role in cell
ate determination and differentiation.25

In the liver, JAG1/Notch signaling pathway appears to be
nvolved in bile duct morphogenesis and/or the maintenance
f the differentiated phenotype of biliary epithelium.26 A
utative role in the postnatal development of intrahepatic
ile ducts is suggested by findings showing that bile ducts
re not congenitally lacking in patients with Alagille syn-
rome, but that the ductal paucity develops progressively
fter birth.19 Consistent with this, it has been recently re-
orted that Notch signaling pathway is activated in mice
uring neonatal period by interaction between Jag1 ex-
ressed in the periportal mesenchyme and Notch2 receptor
ocated in the adjacent biliary epithelial cells.27 However,
xpression patterns of JAG1 and Notch receptors in the
eveloping human liver have raised the possibility that
AG1/Notch signaling also influences duct formation during
mbryogenesis. Thus, in the human fetal liver, at the time of
uctal plate formation, Notch3 receptor has been detected in
esenchymal cells located in the vicinity of ductal plate

ells that expresses JAG1.28 Further studies are needed to
ully define the temporal and spatial specific interactions
etween JAG1 and Notch receptors and the stage(s) at
hich Notch signaling pathway is involved in biliary de-
elopment. Nevertheless, it is clear that the molecular out-
ome of JAG1–Notch interaction is the activation of key
enes involved in cell differentiation. The chain of intracel-
ular events triggered on binding of JAG1 to Notch recep-
ors expressed on adjacent cells is illustrated in Figure 1. In
he absence of Notch signaling, transcription of primary
arget genes is silenced by a corepressor complex, which

igure 1 Simplified overview of the Notch signaling pathway in
ammals. Interaction of JAG1 with Notch receptors expressed on

djacent cells leads to transcriptional activation of target genes
nvolved in cell differentiation. See the text for details.
ncludes hystone deacetylases, recruited by the transcription i
actor RBP-J (also known as CSL). The receptor/ligand
nteraction induces the proteolytic cleavage of the receptor
hat releases its intracellular domain. This domain migrates
nto the nucleus and displaces the corepressor complex from
he RBP-J protein, leading to transcriptional activation of
he target genes.25,29,30

Although the implication of JAG1 in Alagille syndrome
as been widely evidenced and tissue distribution of JAG1
s consistent with clinical abnormalities observed in affected
atients,31,32 there is no clear genotype–phenotype correla-
ion and, as stated earlier, individuals carrying identical
utations may have highly variable manifestations. This

as been best exemplified in a case of monozygotic twins
ith discordant Alagille phenotypes: one twin presented

evere pulmonary atresia and mild liver disease; the other
win had tetralogy of Fallot and severe cholestasis that
equired liver transplantation.33 Therefore, identification of

particular JAG1 mutation does not seem to offer any
rediction of the severity of the disease. The variable phe-
otypes could most likely be explained by the existence of
ither genetic or environmental modifiers, or the interaction
f both. This is supported by studies with mouse models.
ice heterozygous for Jag1 mutation, whose genotype
imics that of patients with Alagille syndrome, exhibit only

cular defects, and do not manifest other phenotypes asso-
iated with Alagille syndrome in humans.34 However, mice
oubly heterozygous for a Jag1 null allele and a Notch2
ypomorphic allele exhibit the developmental abnormalities
haracteristic of Alagille syndrome.35 Thus, Notch2 gene
ppears to act as a genetic modifier to interact with a Jag1
utation in mice. This raises the possibility that polymor-

hisms in particular Notch2 alleles, or in genes encoding
ther components of the Notch signaling pathway, may
nfluence the severity of Alagille syndrome.

rogressive familial intrahepatic cholestasis

rogressive familial intrahepatic cholestasis (PFIC) is a
linical term that encompasses a subset of hereditary disor-
ers caused by impaired bile flow without anatomic obstruc-
ion.36 Affected children typically present chronic intrahe-
atic cholestasis early in infancy, which leads to end-stage
iver disease. Jaundice, severe pruritus, and failure to thrive
re the common and predominant symptoms.37 This heter-
geneous group is currently separated into different genetic
iseases, inherited in a autosomal-recessive fashion. They
nclude BSEP disease and FIC disease, which are characterized
y low serum concentrations of �-glutamyl transpeptidase ac-
ivity and cholesterol despite conjugated hyperbilirubinemia
nd by decreased concentrations of bile salts in bile.38,39 BSEP
isease is caused by mutation in ABCB11 gene, which
ncodes the primary bile salt export pump (BSEP). It is
ocalized in the canalicular membrane of hepatocytes and
unctions in transporting bile acids out of the hepatocyte

nto the canaliculus.40,41 Hepatocellular retention of bile
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alts therefore can be invoked to explain liver injury and
holestasis in this disease. The most common BSEP muta-
ions detected in affected individuals have been found to
revent protein from trafficking to the canalicular mem-
rane of the hepatocyte.42 Consequently, a complete ab-
ence of BSEP canalicular expression has usually been
ound in liver biopsies from these patients.43 Therefore, in
ost cases, immunohistochemical staining for BSEP can be

sed as a test to diagnose BSEP disease. FIC1 disease,
nitially described as “Byler disease,” arises from mutations
n ATP8B1 gene, which is expressed in a wide range of
issues and encodes a P-type ATPase (FIC1, for “familial
ntrahepatic cholestasis 1”) potentially involved in translo-
ation of aminophospholipids from the outer to the inner
eaflet of the plasma membrane bilayer.44,45 How dysfunc-
ion of FIC1 leads to cholestasis remains uncertain, al-
hough recent findings have suggested downregulation of
arnesoid X receptor (FXR, NR1H4) as a possible mecha-
ism.46,47 FXR is a nuclear receptor highly expressed in the
nterohepatic system, where it acts as a bile acid sensor that
aintains a regular bile salt pool size and protects the

epatocyte from excessive intracellular bile acid concentra-
ion.48,49 This is largely achieved through the regulation of
he expression of specific transporters that drive enterohe-
atic circulation, including BSEP and the ileal apical bile
alt transporter (ASBT), as well as key enzymes involved in
ile acid biosynthesis and conjugation (Figure 2). Down-
egulation of FXR with “domino” effects on other genes has
een reported to take place in both the liver and the intestine
f FIC1 disease patients.46,47 Consistent with this, Fxr null
ice exhibit a phenotype similar to both FIC1 and BSEP

igure 2 FXR coordinately regulates bile acid metabolism and
nterohepatic circulation. On binding to bile acids or their conju-
ates, FXR induces in the liver the expression of the canalicular
ransporters BSEP, multidrug resistance protein 3 (MDR3; ABCB4),
nd multidrug resistance-related protein 2 (MRP2; ABCC2), while it
epresses the basolateral sodium taurocholate cotransporting polypep-
ide (NTCP; SLC10A1). In addition, FXR also inhibits transcrip-
ional activity of cholesterol 7�-hydroxylase (CYP7A1), the rate
imiting step in the conversion of cholesterol to bile acids. In the
ntestine, FXR positively regulates the ileal bile acid binding
rotein (I-BABP) and down-regulates the apical sodium-depen-
ent bile salt transporter (ASBT; SLC10A2).
iseases, with hypercholanemia, impaired secretion of bile
cids, and failure to thrive.50 Indeed, many alterations in
ile acid transport and metabolism can be now understood
s a FXR-mediated action, and it is anticipated that a puta-
ive involvement of this or other bile acid-activated tran-
cription factor in the pathogenesis of some idiopathic cho-
estatic liver diseases will be under study. In FIC1 disease,
he use of FXR agonists could have potential therapeutic
mplications.

Treatments for BSEP disease and FIC1 disease have
ncluded ursodeoxycholic acid therapy, partial external bil-
ary diversion, ileal exclusion, and liver transplantation.
artial biliary diversion has been reported to be more effec-

ive than ileal exclusion for the management of patients with
FIC.51 It has also been shown that, following biliary di-
ersion, hepatic ultrastructural appearance, bile acid com-
osition, and biliary excretion improve in PFIC patients.52

owever, this procedure might not work equally well in the
ifferent PFIC subtypes. A recent study conducted in a large
roup of children with genetically documented FIC1 disease
nd BSEP disease has revealed that the outcome of biliary
iversion is better in patients with BSEP disease; in FIC1
isease patients, response to this intervention is poor.53

nterestingly, the outcome of partial biliary diversion in
SEP patients appears to depend on mutations found.53

BSEP disease is readily corrected by liver transplanta-
ion. In contrast, a number of clinical problems persist or
rise in some patients with FIC1 disease after liver replace-
ent, including pancreatitis and intractable diarrhea.36,39

o catch-up in growth and development of steatosis in
llograft have been also reported.54 Some of these compli-
ations could be ascribed to persistent alterations in ileal
ile acid transport owing to FXR downregulation, with
ncreased presentation of bile salt to the ileum after liver
ransplantation leading to exacerbation of diarrhea. In this
cenario, and taking into account the predominant role of
IC1 in the regulation of intestinal bile acid absorption,55 it

s suggested that ileal bypass procedure might be an effica-
ious alternative approach for the management of FIC1
isease.
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